If we're talking about SATA SSDs which top at 600MBps, then yes, an aggressive application can make itself known. However, if you have a modern NVMe, esp. a 4x4 one like Samsung 9x0 series or if you're using a Mac, I bet you'll notice the problem much later, if ever. Remember the SSD trashing problem on M1 Macs? People never noticed that system used SWAP that heavily and trashed the SSD on board.
Then, if you're using a server with a couple of SAS or NVMe SSDs, you'll not notice the problem again, esp. if these are backed by RAID (even md counts).
Now that you say, I have a new Lenovo yoga with those SoC ram with crazy parallel channel config (16gb spread across 8 dies of 2gb). It's noticeably faster than my Acer nitro with dual channel 16gb ddr5. I'll check that, but I'd say it's not what the average home user (and even server I'd risk saying) would have.
If we're talking about SATA SSDs which top at 600MBps, then yes, an aggressive application can make itself known. However, if you have a modern NVMe, esp. a 4x4 one like Samsung 9x0 series or if you're using a Mac, I bet you'll notice the problem much later, if ever. Remember the SSD trashing problem on M1 Macs? People never noticed that system used SWAP that heavily and trashed the SSD on board.
Then, if you're using a server with a couple of SAS or NVMe SSDs, you'll not notice the problem again, esp. if these are backed by RAID (even md counts).